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Light-triggered unloading of liposomes offers an attractive Scheme 1

alternative to the temperature or pH-driven modulation of membrane ro o u Yoo
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(iv) phototransformation of lipid headgroups, e.g via oxygenation
of a double bond.While severing hydrophilic headgroups appears
to be a simple and straightforward way to disrupt the lipid bilayer,
this approach did not receive as much attention. .

Recently we have developed a novel strategy for the assembly
of photolabile molecular systems based on carbonyl additions of Scheme 2 o
substituted di- and trithianes. This methodology allows us to link s 1.Buli sYl\@ocqus
various molecular blocks with photolabile latches that can be unfast- <S}O°H S coam @LS OCzHzs
ened on demand via photoinduced electron trartsfierthis com- 7 OHCGOC12H25 Ho .
munication we report on the synthesis of novel phosphatidylcholine- .
like lipids, in which the hydrophilic phosphocholine headgroups - [O:F\\,c' < 9 e e e
are connected to the hydrophobic tails via a photolabile, dithiane- S0 *“L\ f\@ e
based tether. The photocleavable unit can also be outfitted with 2. MegN > /@L 7
the dual-purpose nitropyridinamino group serving as an internal 6 © 10
ET-sensitizer and as a model eler_nen_t pf molecular recqgr‘i"mon. cycles to disrupt large multilamellar vesicles (LMV) and extruded
He_re we_show that S.UCh photolabile “p'd_s can b(_a used in formu- 21 times at 55C through a polycarbonate filter with 100 nm pores
lations with egg palmltpyl-oleoyl phosphatldyl_chollne_ (POPC) and to form large unilamellar vesicles (LUV). Subsequent gel filtration
gholgstgrol to form vesicles capable of unloading their content upon on Sephadex was carried out to remove untrapped probes.
|rrad|at|on: . . Conventional assays of liposome leakage are based on fluores-
. Synthetic approaches tq the photolabile phosph_ollplpls are ShoWncence recovery derived from reduced efficiency of collisional
In Schemes 1 and 2. 5,5-Bls(h_ydroxymethyl)-l,S-dlt_rﬁa_mealkyl- quenching in the bulk solution as opposed to nearly total quenching
ated to attach two hydrophobic hydrocarbon tails, lithiated and ad- inside the vesicle due to the higher internal concentration of
ded to a solution of in situ generat&dsilylimine 2. Amine 4 is fluorophore quenchebcsWhile these are very simple assays for
reacted with 2-flu_or9-5-nitropyrid_ine, the phenol is deprotec_ted, and studying liposome leakage induced by changes in pH, temperature,
phosphocholine |s_|ntroduced via a standard propédumIV|ng and other nonradiative chemical processes, we detected considerable
1-chIoro-phosphadloxolane to furnish phot(?laplle “ﬁ"SCheme_l' photobleaching of several fluorophores during the photochemical
__ Alternatively, 5-(4-hydroxyphenyl)-1,3-dithiah€) can be util- experiments, rendering fluorescent assays less suitable for quantita-
ized to carry th? hquph'l'c headgroup (Scheme 2). In this example tive monitoring of photoinitiated release. Also, the light absorption
the hydrophoblc tails are attached to the carbonyl corlnp.onent, e'g'by the probe molecule may interfere with the desired photochem-
_3,4-d|hydroxyb<-:_‘nz_alndehyd$)( and thus hydro?‘_ya”‘_y' dithiant0 istry, especially when accurate quantum yield measurements are
is produ_ced. This lipid requires external sensitization for cleavage. required. We suggest that these shortcomings in photochemical

_The liposomes were then prepared _frgm a three_'componemexperiments can be overcome by utilizing the Pulse Field Gradients
mlxture of POPC(egg?cho.le.ste.roi-photollpld in the ratlo 0:3:2. (PFG) NMR techniquefor determining the self-diffusion coef-
First, a thoroughly d”eq lipid fllm was hydrated with a 015 M ficients of small probe molecules, which do not have any interfering
phosphate buffered saline sol_utlon (PBS, _pH 7.0) containing the UV absorption. When the probe is confined inside the vesicle its
probe molecule. The suspension was subjected to 4 frabagy apparent diffusion coefficient is equal to that of the carrier liposome.
It changes by orders of magnitude, depending on the hydrodynamic
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size ratio, when the probe is released into the bulk solution. We
further suggest using probes that carry fluorine-containing groups,
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liposomes in formulations with POPC and cholesterol. The lipids
can be equipped with hydrogen bond-based elements of molecular
recognition offering a possibility to rationally modify the surface
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04 hy of vesicles. Obviously, before this chemistry could be used to solve
Liposome travels 0'2 ¢ tn =157 hr “real” problems of drug delivery, the efficiency of the photofrag-
Liposome size ’ mentation and subsequent release will have to be improved.
L 7 0 ") ' We also have developed a simple assay to monitor the release
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of small organic molecules based on PFG NMR. The potential
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compounds of interest can be labeled via, for example, trifluoro-
acetylation and their unloading from liposomes or other delivery
vehicles can then be followed easily.

Work is in progress in our laboratories to improve the dark
stability of photosensitive liposomes and the efficiency of photo-
Figure 2. TEM images of photolabile liposomes before (A) and after release, and to model recognition events based on vesicle surface
irradiation (B)-same scale. modification.

e.g. trifluoromethyl, for easy detection witiF PFG NMR? In Acknowledgment. Support of this research by the National
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monitoring of membrane permeability. Small inorganic anions  Supporting Information Available: Experimental details (PDF).

showed unacceptably high rates of dark leakage, even when controfThis material is available free of charge via the Internet at http://

experiments were run with liposomes made of well-documented pubs.acs.org.

stable POPC-cholesterol formulations: at room temperature the life-

times of leakage for salts KFDg = 1.33 x 107° cn? s71), KPRy

(Ds = 1.14 x 105 cn? s7 1), and KOTf Os = 9.08 x 1075 cn¥

s™1) were less than 0.5 h, making them impractical for monitoring.

Larger cations were escaping much slower, for example, the lifetime
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